Newton’s method was found by Isaac Newton and Joseph Raphson to find the roots of a function. Newton’s method is an affective way to find the value of variables that make an associated function equal to the 0 vector for any number of dimensions. If the function is defined over the reals and is a smooth curve at least within a neighborhood of the initial values and the value for the desired root, then Newton’s method can be considered. Taking an analysis of a two dimensional system will show the basic process. The extension to an n dimension system is a simple one using the Jacobian matrix.

With any differentiable two dimensional function a tangent line can be taken if \(F(x) \) is the function \(F'(x) \) is the derivative of the function and \(x_n \) is any value chosen close to a root of the function, then \(F'(x_n) \) is defined as the slope of the tangent line to the function at \(x_n \) and \(F(x_n) \) is the evaluated ’height’ of the function.

If the function at \(x_n \) behaves a straight line, then the root of the function is equal to the root of the tangent line. To obtain the actual root of the function, the root of the tangent line can be found repeatedly until it is almost equivalent to the root of the function.

How does one go from \(x_n \) to \(x_r \)

by definition of a derivative

\[
F'(x_n) = \frac{\Delta y}{\Delta x} \quad \Rightarrow \quad \frac{1}{F'(x_n)} = F'(x_n) \quad \Rightarrow \quad (F'(x_n))^{-1} = \frac{\Delta x}{\Delta y}
\]

at \(x_n \) \(\Delta x \) is the distance from \(x_n \) to \(x_r \)
\(x_r = x_n + \Delta x \)

to get \(\Delta x \) from \(\frac{\Delta x}{\Delta y} \) just multiply by \(\Delta y = 0 - F(x_n) = -F(x_n) \)

\[
x_r = x_n - \frac{\Delta x}{\Delta y} \cdot F(x_n) = x_n - (F'(x_n))^{-1} \cdot F(x_n)
\]

then the whole thing is repeated for \(x_r \) so it is redifined as the next \(x_n \)

\[
x_{n+1} = x_n - (F'(x_n))^{-1} \cdot F(x_n)
\]

An example of how this process works and how it doesn’t is given below.

\(\textbf{with} \text{(plots)}: \)
The function \(g = x^3 \) is picked because it can be easily used as an example for when Newton’s method works and doesn’t work.

\[
g := x^3
\]

The function is defined

\[
gf := x \rightarrow x^3
\]
The derivative is taken
\[dgf := x \rightarrow 3 \cdot x^2 \]
\[dgf := x \rightarrow 3 \cdot x^2 \] (3)

A number close to the root is guessed \((x_0 = 2) \) and the tangent line \((s1)\) at \(x_0 \) to \(g = x^3 \) has an x-axis intercept equal to the next value \(x_1 \).
\[x_0 := 2 \]
\[x_0 := 2 \] (4)

\[s1 := dgf(x_0) \cdot (x - x_0) + gf(x_0) \]
\[s1 := 12 \cdot x - 16 \] (5)

The guessed value \(x_0 = 2 \) is plugged into the formula \(x_1 = x_0 - \frac{F(x)}{F'(x)} \) where, \(x_0 \) is the initial guess, \(x_1 \) is the next x value
\[x_1 := x_0 - \frac{gf(x_0)}{dgf(x_0)} \]
\[x_1 := \frac{4}{3} \] (6)

These two steps are repeated for tangent lines \(s1 \), \(s2 \) and \(s3 \) with the formula
\[x_{n+1} = x_n - \frac{F(x)}{F'(x)} \]

\[s2 := dgf(x_1) \cdot (x - x_1) + gf(x_1) \]
\[s2 := \frac{16}{3} \cdot x - \frac{128}{27} \] (7)

\[x_2 := x_1 - \frac{gf(x_1)}{dgf(x_1)} \]
\[x_2 := \frac{8}{9} \] (8)

\[s3 := dgf(x_2) \cdot (x - x_2) + gf(x_2) \]
\[s3 := \frac{64}{27} \cdot x - \frac{1024}{729} \] (9)
As can be seen from the graph, the first tangent line (green) comes close to the root, the next tangent line (blue) comes closer, and the next (red) comes even closer. The process continues until the x_{n+1} value when plugged into the function is close to 0.
The enclosed subsection contains the same process with a new function

\[h := x^3 + 2 \]
\[hf := x \rightarrow x^3 + 2 \]
\[dhf := x \rightarrow 3 \cdot x^2 \]
\[t1 := dhf(2) \cdot (x - 2) + hf(2) \]
\[a0 := 2 - \frac{(hf(2))}{dhf(2)} \]
\[t2 := dhf(a0) \cdot (x - a0) + hf(a0) \]
\[a1 := a0 - \frac{(hf(a0))}{dhf(a0)} \]
\[t3 := dhf(a1) \cdot (x - a1) + hf(a1) \]
\[a2 := a1 - \frac{(hf(a1))}{dhf(a1)} \]
\[t4 := dhf(a2) \cdot (x - a2) + hf(a2) \]
\[\text{hor} := 2 \]

\[\text{hor} \Rightarrow \text{is the perfectly horizontal brown line} \]
Below is the function \(h=x^3+2 \) which is slightly different, but enough so that Newton’s method is substantially less effective.

\[
\text{display}\{\text{plot}(t1, x=-5..5, y=-5..5, \text{color}=\text{green}), \text{plot}(t2, x=-5..5, y=-5..5, \text{color}=\text{blue}), \text{plot}(h, x=-5..5, y=-5..5, \text{color}=\text{black}), \text{plot}(t3, x=-5..5, y=-5..5, \text{color}=\text{red}), \text{plot}(t4, x=-5..5, y=-5..5, \text{color}=\text{yellow}), \text{plot}(\text{hor}, x=-5..5, y=-5..5, \text{color}=\text{brown})\}\}
\]

The last tangent line isn’t visible on the screen because the previous tangent line (in red) deviates too far from the desired root. The x2 value (from the red line) is far on the left side of the graph and even though the code will continue until it finds the correct answer (now approaching from the left), this method becomes quite inefficient. This type of problem will occur everytime the tangent line is evaluated near an \(x_n \) value where the derivative is equal to 0. The brown line illustrates how if Newton’s method attempts to run at that specific \(x_{sp} \) value (where \(F'(x_{sp})=0 \)), then there will be no x-intercept and the code won’t be able to divide by 0.
To extend this idea to a Multivariable system
such as the one described by these equations
\[
\begin{align*}
3 \cdot x_1 - \cos(x_2 \cdot x_3) - \frac{1}{2} &= 0, \\
x_1^2 - 81 \cdot (x_2 + 0.1)^2 + \sin(x_3) + 1.06 &= 0, \\
\exp(-x_1 \cdot x_2) + 20 \cdot x_3 + \frac{10 \cdot \pi}{3} - 1 &= 0,
\end{align*}
\]
with initial conditions are set and used as \(x_0\)
\[
\begin{bmatrix}
0.1 \\
0.1 \\
-0.1
\end{bmatrix}
\]
The equations are changed to functions in vector form for \(F(x)\)
\[
\begin{bmatrix}
(x_1, x_2, x_3) \rightarrow 3 \cdot x_1 - \cos(x_2 \cdot x_3) - \frac{1}{2} \\
(x_1, x_2, x_3) \rightarrow x_1^2 - 81 \cdot (x_2 + 0.1)^2 + \sin(x_3) + 1.06 \\
(x_1, x_2, x_3) \rightarrow \exp(-x_1 \cdot x_2) + 20 \cdot x_3 + \frac{10 \cdot \pi}{3} - 1
\end{bmatrix}
\]
The Jacobian of this function is found for \(F'(x)\)
\[
F'(x)
:= \begin{bmatrix}
\begin{bmatrix}
(x_1, x_2, x_3) \rightarrow 3, \\
(x_1, x_2, x_3) \rightarrow \sin(x_2 \cdot x_3) \cdot x_3, \\
(x_1, x_2, x_3) \rightarrow \cos(x_2 \cdot x_3)
\end{bmatrix}, \\
\begin{bmatrix}
(x_1, x_2, x_3) \rightarrow 2 \cdot x_1, \\
(x_1, x_2, x_3) \rightarrow -162 \cdot x_2 - 16.2, \\
(x_1, x_2, x_3) \rightarrow \cos(x_3)
\end{bmatrix}, \\
\begin{bmatrix}
(x_1, x_2, x_3) \rightarrow -x_2 \cdot e^{-x_1 \cdot x_2}, \\
(x_1, x_2, x_3) \rightarrow -x_1 \cdot e^{-x_1 \cdot x_2}, \\
(x_1, x_2, x_3) \rightarrow 20
\end{bmatrix}
\end{bmatrix}
\]
The Jacobian matrix is inverted and then the equation is used just as before
\[
x_{n+1} = x_n - [F'(x_n)]^{-1} \cdot F(x_n)
\]
where \(x_n, \ x_{n+1}, \) and \(F(x_n)\) are vectors and \([F'(x_n)]^{-1}\) is a matrix.
How the proc prcNewtonsys works:
It first takes in a system of equations, second a list of variables (e.g. \([x_1, x_2, x_3,\ldots]\)), third a list of initial values for the variables.
The actual number of dimensions passed in is irrelevant to the functions called in the code. The proc will find the root(s) for any number of dimensions.
There are two optional arguments that can be passed in:
\(\text{epsilon} \Rightarrow\) once the proc evaluates a value of \(F(x_n)\) whose distance to the 0 vector is smaller than \(\text{epsilon}\) the proc stops.
\(\text{maxlps} \Rightarrow\) the maximum number of times the proc will loop.
The function will produce an error if it cannot reach a solution within the maximum number of loops or if the Jacobian matrix is singular.

```plaintext
> prcNewtonsys := proc()

# arguments list
# lstftnsys a list of system RHS is 0
# lstvars a list of variables \([x_1, x_2, \ldots]\)
# lststrpt a list of start point like \([x_1=a, x_2=b, \ldots]\)
# epsilon \(\epsilon\) (option) \(\epsilon = 10^{-7}\) by default
# maxlps maximum loop times (option) maxlps =100 by default

local lstftnsys, lstfn, ftln, ftini, dftn, dftni, y, lstvars, lststrpt,
    epsilon, maxlps, i, lstxi, xi;

# start arguments handling
if nargs > 5 then
    error "expecting four arguments at most";
elif nargs < 3 then
    error "expecting three arguments at least";
end if;

lstftnsys := args[1];
lstvars := args[2];
lststrpt := args[3];

if nargs = 3 then
    epsilon := 10^{-7};
    maxlps := 100 ;
elif nargs = 4 then
    epsilon := args[4];
    maxlps := 100 ;
else
    epsilon := args[4];
    maxlps := args[5];
end if;
```

additional code
end arguments handling

```python
with(VectorCalculus):
    with(LinearAlgebra):

lstfn := map(lhs, lstftnsys);
ftn := map(unapply, lstfn, op(lstvars));

dftn := VectorCalculus[Jacobian](ftn(op(lstvars)), lstvars);
dftn := map(unapply, dftn, op(lstvars));

lstx1 := lststrpt;
xi := convert(lstx1, Vector);
i := 0;

do
    ftni := evalf(ftn(op(lstxi)));  
    dftni := map(apply, dftn, op(lstxi));
    ftni := convert(ftni, Vector);
    dftni := convert(dftni, Matrix);

### add your code here ###
    if Determinant(dftni) ≠ 0 then
        y := -MatrixInverse(dftni).ftni;
        xi := xi - MatrixInverse(dftni).ftni;
    else
        error the matrix is "not" invertible please input different initial values;
    end if;

    lstx1 := convert(xi, list);
i := i + 1;
if i > maxlps then  # if It taken too many steps then stop it
    error solution `not` found;
end if;
if norm(y, ∞) < epsilon then
    break;
end if;
end do;
return convert(lstxi, Vector), ftni;
end proc:

> lstftnsys := [3·x1 − cos(x2·x3) − \frac{1}{2} = 0,
\[ x1^2 − 81·(x2 + 0.1)^2 + \sin(x3) + 1.06 = 0, \]
\[
\exp(-x_1 \cdot x_2) + 20 \cdot x_3 + \frac{10 \cdot \Pi}{3} - 1 = 0
\]

\[\text{lstvars} := [x_1, x_2, x_3] ;\]
\[\text{lststrpt} := [0.1, 0.1, -0.1] ;\]

\[
> \text{procNewtnsys(lstfntsxs, lstvars, lststrpt)} ;
\]
\[
\begin{bmatrix}
0.5000000000000000 \\
5.26191604463450 \cdot 10^{-12} \\
-0.523598775499869
\end{bmatrix}
\begin{bmatrix}
2.12265760524133 \cdot 10^{-11} \\
-1.25430799080561 \cdot 10^{-8} \\
1.7946531484607 \cdot 10^{-11}
\end{bmatrix}
\]

(10)

The first vector is the \(x_1, x_2, \text{ and } x_3\) input values that cause the function to equal \(\approx 0\).

The second vector is the value output of the function when \(x_1, x_2, \text{ and } x_3\) are plugged in, and it is clearly close to the 0 vector.